1,779 research outputs found

    ProtQuant: a tool for the label-free quantification of MudPIT proteomics data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective and economical methods for quantitative analysis of high throughput mass spectrometry data are essential to meet the goals of directly identifying, characterizing, and quantifying proteins from a particular cell state. Multidimensional Protein Identification Technology (MudPIT) is a common approach used in protein identification. Two types of methods are used to detect differential protein expression in MudPIT experiments: those involving stable isotope labelling and the so-called label-free methods. Label-free methods are based on the relationship between protein abundance and sampling statistics such as peptide count, spectral count, probabilistic peptide identification scores, and sum of peptide Sequest XCorr scores (ΣXCorr). Although a number of label-free methods for protein quantification have been described in the literature, there are few publicly available tools that implement these methods. We describe ProtQuant, a Java-based tool for label-free protein quantification that uses the previously published ΣXCorr method for quantification and includes an improved method for handling missing data.</p> <p>Results</p> <p><it>ProtQuant </it>was designed for ease of use and portability for the bench scientist. It implements the ΣXCorr method for label free protein quantification from MudPIT datasets. <it>ProtQuant </it>has a graphical user interface, accepts multiple file formats, is not limited by the size of the input files, and can process any number of replicates and any number of treatments. In addition,<it>ProtQuant </it>implements a new method for dealing with missing values for peptide scores used for quantification. The new algorithm, called ΣXCorr*, uses "below threshold" peptide scores to provide meaningful non-zero values for missing data points. We demonstrate that ΣXCorr* produces an average reduction in false positive identifications of differential expression of 25% compared to ΣXCorr.</p> <p>Conclusion</p> <p><it>ProtQuant </it>is a tool for protein quantification built for multi-platform use with an intuitive user interface. <it>ProtQuant </it>efficiently and uniquely performs label-free quantification of protein datasets produced with Sequest and provides the user with facilities for data management and analysis. Importantly, <it>ProtQuant </it>is available as a self-installing executable for the Windows environment used by many bench scientists.</p

    The Effect of Using an Inappropriate Protein Database for Proteomic Data Analysis

    Get PDF
    A recent study by Bromenshenk et al., published in PLoS One (2010), used proteomic analysis to identify peptides purportedly of Iridovirus and Nosema origin; however the validity of this finding is controversial. We show here through re-analysis of a subset of this data that many of the spectra identified by Bromenshenk et al. as deriving from Iridovirus and Nosema proteins are actually products from Apis mellifera honey bee proteins. We find no reliable evidence that proteins from Iridovirus and Nosema are present in the samples that were re-analyzed. This article is also intended as a learning exercise for illustrating some of the potential pitfalls of analysis of mass spectrometry proteomic data and to encourage authors to observe MS/MS data reporting guidelines that would facilitate recognition of analysis problems during the review process

    Identification of diarrheagenic Escherichia coli isolated from infants and children in Dar es Salaam, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively few studies have been done in Tanzania to detect and classify diarrheagenic <it>Escherichia coli </it>(DEC) strains among children with diarrhea. This study aimed at investigating DEC among children in Dar es Salaam aged less than five years hospitalized due to acute/persistent diarrhea.</p> <p>Methods</p> <p>DEC were isolated from stool samples collected from two hundred and eighty children with acute/persistent diarrhea at Muhimbili National Hospital and Ilala and Mwananyamala Municipal Hospitals in Dar es Salaam. A multiplex PCR system method was used to detect a species specific gene for <it>E.coli </it>and ten different virulence genes for detection of five pathogroups of DEC namely enteroaggregative- (EAEC), enteropathogenic- (EPEC), enterotoxigenic- (ETEC), enteroinvasive- (EIEC) and enterohemorghagic- <it>Escherichia coli </it>(EHEC).</p> <p>Results</p> <p>Sixty-four patients (22.9%) harbored DEC. Forty-one of them (14.6%) were categorized as EAEC. Most of the EAEC (82.9%) were classified as typical EAEC possessing the <it>aggR </it>gene, and 92.6% carried the <it>aat </it>gene. Isolates from thirteen patients were EPEC (4.6%) and most of these (92.3%) were typical EPEC with both <it>eae </it>and <it>bfpA </it>genes. Ten isolates were identified as ETEC (3.6%) with only the heat stable toxin; either <it>st1a </it>or <it>st1b </it>but not both. Age wise, EAEC and EPEC were significantly more prevalent among the age group 0–6 months (p < 0.05). Genes for EHEC (<it>stx</it><sub>1 </sub>and <it>stx</it><sub>2</sub>) and EIEC <it>(ial</it>) were not detected in this study group.</p> <p>Conclusion</p> <p>The results show a high proportion of DEC among Tanzanian children with diarrhea, with typical EAEC and typical EPEC predominating. The use of primers for both variants of ST1 (st1a and st1b) increased the sensitivity for detection of ETEC strains.</p

    Mapping an atlas of tissue-specific drosophila melanogaster metabolomes by high resolution mass spectrometry

    Get PDF
    Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes

    Protein trafficking through the endosomal system prepares intracellular parasites for a home invasion

    Get PDF
    Toxoplasma (toxoplasmosis) and Plasmodium (malaria) use unique secretory organelles for migration, cell invasion, manipulation of host cell functions, and cell egress. In particular, the apical secretory micronemes and rhoptries of apicomplexan parasites are essential for successful host infection. New findings reveal that the contents of these organelles, which are transported through the endoplasmic reticulum (ER) and Golgi, also require the parasite endosome-like system to access their respective organelles. In this review, we discuss recent findings that demonstrate that these parasites reduced their endosomal system and modified classical regulators of this pathway for the biogenesis of apical organelles

    A Dynamic Noise Level Algorithm for Spectral Screening of Peptide MS/MS Spectra

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput shotgun proteomics data contain a significant number of spectra from non-peptide ions or spectra of too poor quality to obtain highly confident peptide identifications. These spectra cannot be identified with any positive peptide matches in some database search programs or are identified with false positives in others. Removing these spectra can improve the database search results and lower computational expense.</p> <p>Results</p> <p>A new algorithm has been developed to filter tandem mass spectra of poor quality from shotgun proteomic experiments. The algorithm determines the noise level dynamically and independently for each spectrum in a tandem mass spectrometric data set. Spectra are filtered based on a minimum number of required signal peaks with a signal-to-noise ratio of 2. The algorithm was tested with 23 sample data sets containing 62,117 total spectra.</p> <p>Conclusions</p> <p>The spectral screening removed 89.0% of the tandem mass spectra that did not yield a peptide match when searched with the MassMatrix database search software. Only 6.0% of tandem mass spectra that yielded peptide matches considered to be true positive matches were lost after spectral screening. The algorithm was found to be very effective at removal of unidentified spectra in other database search programs including Mascot, OMSSA, and X!Tandem (75.93%-91.00%) with a small loss (3.59%-9.40%) of true positive matches.</p

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Higher-order renormalization of graphene many-body theory

    Full text link
    We study the many-body theory of graphene Dirac quasiparticles interacting via the long-range Coulomb potential, taking as a starting point the ladder approximation to different vertex functions. We test in this way the low-energy behavior of the electron system beyond the simple logarithmic dependence of electronic correlators on the high-energy cutoff, which is characteristic of the large-N approximation. We show that the graphene many-body theory is perfectly renormalizable in the ladder approximation, as all higher powers in the cutoff dependence can be absorbed into the redefinition of a finite number of parameters (namely, the Fermi velocity and the weight of the fields) that remain free of infrared divergences even at the charge neutrality point. We illustrate this fact in the case of the vertex for the current density, where a complete cancellation between the cutoff dependences of vertex and electron self-energy corrections becomes crucial for the preservation of the gauge invariance of the theory. The other potentially divergent vertex corresponds to the staggered (sublattice odd) charge density, which is made cutoff independent by a redefinition in the scale of the density operator. This allows to compute a well-defined, scale invariant anomalous dimension to all orders in the ladder series, which becomes singular at a value of the interaction strength marking the onset of chiral symmetry breaking (and gap opening) in the Dirac field theory. The critical coupling we obtain in this way matches with great accuracy the value found with a quite different method, based on the resolution of the gap equation, thus reassuring the predictability of our renormalization approach.Comment: 27 pages, 7 figures, references adde
    corecore